CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access.
نویسندگان
چکیده
The suprachiasmatic nucleus (SCN) is a central pacemaker in mammals, driving many endogenous circadian rhythms. An important pacemaker target is the regulation of a hormonal message for darkness, the circadian rhythm in melatonin synthesis. The endogenous clock within the SCN is synchronized to environmental light/dark cycles by photic information conveyed via the retinohypothalamic tract (RHT) and by the nocturnal melatonin signal that acts within a feedback loop. We investigated how melatonin intersects with the temporally gated resetting actions of two RHT transmitters, pituitary adenylate cyclase-activating polypeptide (PACAP) and glutamate. We analyzed immunocytochemically the inducible phosphorylation of the transcription factor Ca2+/cAMP response element-binding protein (CREB) in the SCN of a melatonin-proficient (C3H) and a melatonin-deficient (C57BL) mouse strain. In vivo, light-induced phase shifts in locomotor activity were consistently accompanied by CREB phosphorylation in the SCN of both strains. However, in the middle of subjective nighttime, light induced larger phase delays in C57BL than in C3H mice. In vitro, PACAP and glutamate induced CREB phosphorylation in the SCN of both mouse strains, with PACAP being more effective during late subjective daytime and glutamate being more effective during subjective nighttime. Melatonin suppressed PACAP- but not glutamate-induced phosphorylation of CREB. The distinct temporal domains during which glutamate and PACAP induce CREB phosphorylation imply that during the light/dark transition the SCN switches sensitivity between these two RHT transmitters. Because these temporal domains are not different between C3H and C57BL mice, the sensitivity windows are set independently of the rhythmic melatonin signal.
منابع مشابه
Temporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN.
Circadian rhythms in physiology and behavior are temporally synchronized to the day/night cycle through the action of light on the circadian clock. In mammals, transduction of the photic signal reaching the circadian oscillator in the suprachiasmatic nucleus (SCN) occurs through the release of glutamate and pituitary adenylate cyclase-activating peptide (PACAP). The authors' study aimed at clar...
متن کاملPhosphorylation of CREB Ser142 Regulates Light-Induced Phase Shifts of the Circadian Clock
Biological rhythms are driven in mammals by a central circadian clock located in the suprachiasmatic nucleus (SCN). Light-induced phase shifting of this clock is correlated with phosphorylation of CREB at Ser133 in the SCN. Here, we characterize phosphorylation of CREB at Ser142 and describe its contribution to the entrainment of the clock. In the SCN, light and glutamate strongly induce CREB S...
متن کاملPituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock.
The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep-wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating pept...
متن کاملPituitary adenylate cyclase-activating polypeptide and melatonin in the suprachiasmatic nucleus: effects on the calcium signal transduction cascade.
The suprachiasmatic nucleus (SCN) harbors an endogenous oscillator generating circadian rhythms that are synchronized to the external light/dark cycle by photic information transmitted via the retinohypothalamic tract (RHT). The RHT has recently been shown to contain pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitter/neuromodulator. PACAPergic effects on cAMP-mediate...
متن کاملResetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide.
Synchronization between the environmental lighting cycle and the biological clock in the suprachiasmatic nucleus (SCN) is correlated with phosphorylation of the Ca2+/cAMP response element binding protein (CREB) at the transcriptional activating site Ser133. Mechanisms mediating the formation of phospho-CREB (P-CREB) and their relation to clock resetting are unknown. To address these issues, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 24 شماره
صفحات -
تاریخ انتشار 1998